IHK/McKernel¶

IHK/McKernel is a light-weight multi-kernel operating system designed for high-end supercomputing. It runs Linux and McKernel, a light-weight kernel (LWK), side-by-side inside compute nodes and aims at the following:
Provide scalable and consistent execution of large-scale parallel scientific applications, but at the same time maintain the ability to rapidly adapt to new hardware features and emerging programming models
Provide efficient memory and device management so that resource contention and data movement are minimized at the system level
Eliminate OS noise by isolating OS services in Linux and provide jitter free execution on the LWK
Support the full POSIX/Linux APIs by selectively offloading (slow-path) system calls to Linux
See Quick Guide – Installation for jump start.
1. Introduction¶
IHK/McKernel is a light-weight multi-kernel operating system designed for high-end supercomputing. It runs Linux and McKernel, a light-weight kernel (LWK), side-by-side inside compute nodes and aims at the following:
Provide scalable and consistent execution of large-scale parallel scientific applications, but at the same time maintain the ability to rapidly adapt to new hardware features and emerging programming models
Provide efficient memory and device management so that resource contention and data movement are minimized at the system level
Eliminate OS noise by isolating OS services in Linux and provide jitter free execution on the LWK
Support the full POSIX/Linux APIs by selectively offloading (slow-path) system calls to Linux
2. Background and Motivation¶
With the growing complexity of high-end supercomputers, the current system software stack faces significant challenges as we move forward to exascale and beyond. The necessity to deal with extreme degree of parallelism, heterogeneous architectures, multiple levels of memory hierarchy, power constraints, etc., advocates operating systems that can rapidly adapt to new hardware requirements, and that can support novel programming paradigms and runtime systems. On the other hand, a new class of more dynamic and complex applications are also on the horizon, with an increasing demand for application constructs such as in-situ analysis, workflows, elaborate monitoring and performance tools. This complexity relies not only on the rich features of POSIX, but also on the Linux APIs (such as the /proc, /sys filesystems, etc.) in particular.
2.1. Two Traditional HPC OS Approaches¶
Traditionally, light-weight operating systems specialized for HPC followed two approaches to tackle scalable execution of large-scale applications. In the full weight kernel (FWK) approach, a full Linux environment is taken as the basis, and features that inhibit attaining HPC scalability are removed, i.e., making it light-weight. The pure light-weight kernel (LWK) approach, on the other hand, starts from scratch and effort is undertaken to add sufficient functionality so that it provides a familiar API, typically something close to that of a general purpose OS, while at the same time it retains the desired scalability and reliability attributes. Neither of these approaches yields a fully Linux compatible environment.
2.2. The Multi-kernel Approach¶
A hybrid approach recognized recently by the system software community is to run Linux simultaneously with a lightweight kernel on compute nodes and multiple research projects are now pursuing this direction. The basic idea is that simulations run on an HPC tailored lightweight kernel, ensuring the necessary isolation for noiseless execution of parallel applications, but Linux is leveraged so that the full POSIX API is supported. Additionally, the small code base of the LWK can also facilitate rapid prototyping for new, exotic hardware features. Nevertheless, the questions of how to share node resources between the two types of kernels, where do device drivers execute, how exactly do the two kernels interact with each other and to what extent are they integrated, remain subjects of ongoing debate.
3. Architectural Overview¶
At the heart of the stack is a low-level software infrastructure called Interface for Heterogeneous Kernels (IHK). IHK is a general framework that provides capabilities for partitioning resources in a many-core environment (e.g.,CPU cores and physical memory) and it enables management of lightweight kernels. IHK can allocate and release host resources dynamically and no reboot of the host machine is required when altering configuration. IHK also provides a low-level inter-kernel messaging infrastructure, called the Inter-Kernel Communication (IKC) layer. An architectural overview of the main system components is shown below.

McKernel is a lightweight kernel written from scratch. It is designed for HPC and is booted from IHK. McKernel retains a binary compatible ABI with Linux, however, it implements only a small set of performance sensitive system calls and the rest are offloaded to Linux. Specifically, McKernel has its own memory management, it supports processes and multi-threading with a simple round-robin cooperative (tick-less) scheduler, and it implements signaling. It also allows inter-process memory mappings and it provides interfaces to hardware performance counters.
3.1. Functionality¶
An overview of some of the principal functionalities of the IHK/McKernel stack is provided below.
3.1.1. System Call Offloading¶
System call forwarding in McKernel is implemented as follows. When an offloaded system call occurs, McKernel marshals the system call number along with its arguments and sends a message to Linux via a dedicated IKC channel. The corresponding proxy process running on Linux is by default waiting for system call requests through an ioctl() call into IHK’s system call delegator kernel module. The delegator kernel module’s IKC interrupt handler wakes up the proxy process, which returns to userspace and simply invokes the requested system call. Once it obtains the return value, it instructs the delegator module to send the result back to McKernel, which subsequently passes the value to user-space.
3.1.2. Unified Address Space¶
The unified address space model in IHK/McKernel ensures that offloaded system calls can seamlessly resolve arguments even in case of pointers. This mechanism is depicted below and is implemented as follows.

First, the proxy process is compiled as a position independent binary, which enables us to map the code and data segments specific to the proxy process to an address range which is explicitly excluded from McKernel’s user space. The grey box on the right side of the figure demonstrates the excluded region. Second, the entire valid virtual address range of McKernel’s application user-space is covered by a special mapping in the proxy process for which we use a pseudo file mapping in Linux. This mapping is indicated by the blue box on the left side of the figure.
4. Installation¶
The following OS distributions and platforms are recommended:
OS distribution
CentOS 7.3 or later
RHEL 7.3 or later
Platform
Intel Xeon
Intel Xeon Phi
Fujitsu A64FX
4.1. Prepare files for building McKernel¶
Grant read permission to the System.map file of your kernel version on the build machine:
sudo chmod a+r /boot/System.map-`uname -r`
Install the following packages to the build machine:
cmake kernel-devel binutils-devel systemd-devel numactl-devel gcc make nasm git libdwarf-devel capstone-devel
4.1.1. When having access to repositories¶
On RHEL 8, enable the CodeReady Linux Builder (CLB) repository:
sudo subscription-manager repos --enable codeready-builder-for-rhel-8-$(/bin/arch)-rpms
On CentOS 8, enable the PowerTools repository:
sudo dnf config-manager --set-enabled PowerTools
Enable EPEL repository:
sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
Install with yum:
sudo yum install cmake kernel-devel binutils-devel systemd-devel numactl-devel gcc make nasm git libdwarf-devel capstone-devel
4.1.2. When not having access to repositories¶
libdwarf-devel
¶
Ask the system administrator to install them. Note that libdwarf-devel
is in the CodeReady Linux Builder repository on RHEL 8 or in the PowerTools repository on CentOS 8.
capstone-devel
¶
Ask the system administrator to install
capstone-devel
. Note that it is in the EPEL repository.Download the rpm with the machine in which you are the administrator:
sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
sudo yum install yum-utils
yumdownloader capstone-devel
And then install it to your home directory:
cd $HOME/$(uname -p)
rpm2cpio capstone-devel-4.0.1-9.el8.aarch64.rpm | cpio -idv
sed -i 's#/usr/#'"$HOME"'/'"$(uname -p)"'/usr/#' $HOME/$(uname -p)/usr/lib64/pkgconfig/capstone.pc
4.2. Clone, compile, install¶
Clone the source code:
mkdir -p ~/src/ihk+mckernel/
cd ~/src/ihk+mckernel/
git clone --recursive -b development https://github.com/ihkmckernel/mckernel.git
(Optional) Checkout to the specific branch or version:
cd mckernel
git checkout <pathspec>
git submodule update
Foe example, if you want to try the development branch, use “development” as the pathspec. If you want to try the prerelease version 1.7.0-0.2, use “1.7.0-0.2”.
Move to build directory:
mkdir -p ~/src/ihk+mckernel/build && cd ~/src/ihk+mckernel/build
Run cmake:
4.2.1. When not cross-compiling:¶
CMAKE_PREFIX_PATH=${HOME}/$(uname -p)/usr \
cmake -DCMAKE_INSTALL_PREFIX=${HOME}/ihk+mckernel \
-DENABLE_UTI=ON \
../mckernel
Note that CMAKE_PREFIX_PATH=${HOME}/$(uname -p)/usr
is required only when capstone-devel
is installed to your home directory.
4.2.2. When cross-compiling:¶
cmake -DCMAKE_INSTALL_PREFIX=${HOME}/ihk+mckernel \
-DUNAME_R=<target_uname_r> \
-DKERNEL_DIR=<kernnel_dir> \
-DBUILD_TARGET=smp-arm64 \
-DCMAKE_TOOLCHAIN_FILE=../mckernel/cmake/cross-aarch64.cmake \
-DENABLE_UTI=ON \
../mckernel
4.2.3. Install with cmake¶
Install with make:
make -j install
The kernel modules and McKernel kernel image should be installed under the ihk+mckernel folder in your home directory.
4.2.4. Install with rpm¶
Create the tarball and the spec file:
make dist
cp mckernel-<version>.tar.gz <rpmbuild>/SOURCES
Create the rpm package:
When cross-compiling:¶
rpmbuild -ba scripts/mckernel.spec --target <target_uname_m> -D 'kernel_version <target_uname_r>' -D 'kernel_dir <kernel_source>'
Install the rpm package:
sudo rpm -ivh <rpmbuild>/RPMS/<arch>/mckernel-<version>-<release>_<linux_kernel_ver>_<dist>.<arch>.rpm
The kernel modules and McKernel kernel image are installed under the standard system directories.
4.3. Prepare files and change settings for installing McKernel¶
Disable SELinux of the compute nodes:
sudo vim /etc/selinux/config
Change the file to SELINUX=disabled. And then reboot the compute nodes:
sudo reboot
Install the following packages to the compute nodes:
systemd-libs numactl-libs libdwarf capstone
4.3.1. When having access to repositories¶
On RHEL 8, enable the CodeReady Linux Builder (CLB) repository:
sudo subscription-manager repos --enable codeready-builder-for-rhel-8-$(/bin/arch)-rpms
On CentOS 8, enable the PowerTools repository:
sudo dnf config-manager --set-enabled PowerTools
Enable EPEL repository:
sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
Install with yum:
sudo yum install systemd-libs numactl-libs libdwarf capstone
4.3.2. When not having access to repositories¶
libdwarf
¶
Ask the system administrator to install them. Note that libdwarf
is in the CodeReady Linux Builder repository on RHEL 8 or in the PowerTools repository on CentOS 8.
capstone
¶
Ask the system administrator to install
capstone
. Note that it is in the EPEL repository.Download the rpm with the machine in which you are the administrator:
sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
sudo yum install yum-utils
yumdownloader capstone
and then install it to your home directory:
cd $HOME/$(uname -p)
rpm2cpio capstone-4.0.1-9.el8.aarch64.rpm | cpio -idv
4.4. Boot McKernel¶
A boot script called mcreboot.sh
is provided under sbin
in the install
folder. To boot on logical CPU 1 with 512MB of memory, use the following
invocation:
export TOP=${HOME}/ihk+mckernel/
cd ${TOP}
sudo ./sbin/mcreboot.sh -c 1 -m 512m
You should see something similar like this if you display the McKernel’s kernel message log:
./sbin/ihkosctl 0 kmsg
IHK/McKernel started.
[ -1]: no_execute_available: 1
[ -1]: map_fixed: phys: 0xfee00000 => 0xffff860000009000 (1 pages)
[ -1]: setup_x86 done.
[ -1]: ns_per_tsc: 385
[ -1]: KCommand Line: hidos dump_level=24
[ -1]: Physical memory: 0x1ad3000 - 0x21000000, 525520896 bytes, 128301 pages available @ NUMA: 0
[ -1]: NUMA: 0, Linux NUMA: 0, type: 1, available bytes: 525520896, pages: 128301
[ -1]: NUMA 0 distances: 0 (10),
[ -1]: map_fixed: phys: 0x28000 => 0xffff86000000a000 (2 pages)
[ -1]: Trampoline area: 0x28000
[ -1]: map_fixed: phys: 0x0 => 0xffff86000000c000 (1 pages)
[ -1]: # of cpus : 1
[ -1]: locals = ffff880001af6000
[ 0]: BSP: 0 (HW ID: 1 @ NUMA 0)
[ 0]: BSP: booted 0 AP CPUs
[ 0]: Master channel init acked.
[ 0]: vdso is enabled
IHK/McKernel booted.
4.5. Run a simple program on McKernel¶
The mcexec command line tool (which is also the Linux proxy process) can be used for executing applications on McKernel:
./bin/mcexec hostname
centos-vm
4.6. Shutdown McKernel¶
Finally, to shutdown McKernel and release CPU/memory resources back to Linux use the following command:
sudo ./sbin/mcstop+release.sh
5. The Team¶
The McKernel project was started at The University of Tokyo and currently it is mainly developed at RIKEN. Some of our collaborators include:
Hitachi
Fujitsu
CEA (France)
NEC
6. License¶
McKernel is GPL licensed, as found in the LICENSE file.
7. Contact¶
Please give your feedback to us via the following mailing list: ihkmckernel@googlegroups.com
1. Architectural Overview¶
2. Running Programs¶
You need to check if your application and pre-/post-processing programs are suited to run with McKernel. Follow the guide below to choose to run the whole on McKernel, or run the whole on Linux, or run pre-/post-processing on Linux and the application on McKernel:
Application
Run the whole on Linux if it issues system calls frequently and becoming the bottleneck with McKernel, e.g., those performing many file I/O operations.
Otherwise, run it on McKernel.
Pre-/Post-processing
Run it on McKernel if it consumes a large amount of memory or the execution time isn’t prolonged prohivitively with McKernel. The reason for the first condition is that the resource could be limited for Linux CPUs in the nodes for McKernel.
Otherwise, run it on Linux.
2.1. Modify job script¶
When using job submission system, you need to modify the job scripts so that the job script itself is going to run on Linux.
For example, with Fujitsu Technical Computing Suite (TCS), you need to specify jobenv=mck1
by inserting the following line into the job script:
#PJM -L jobenv=mck1
2.2. (Optional, Fujitsu TCS only) Specify boot parameters¶
You can specify the boot parameters by defining environmental variables and pass them to Fujitsu TCS. The parameters include the resource reservation settings, resource reservation amount, kernel arguments and routing of message channels between McKernel CPUs and Linux CPUs. See IHK Specifications - ihk_create_os_str() for the parameter names and allowed values. The example of setting the memory amount is shown below.
export IHK_MEM="7G@4,7G@5,7G@6,7G@7"
pjsub -X run.sh
2.3. Insert mcexec
into the command line¶
You need to insert mcexec
into the command lines invoking the programs that you chose to run on McKernel:
2.3.2. MPI programs¶
Fujitsu MPI¶
Insert mcexec
after mpirun and before an
executable:
mpirun -n <number-of-MPI-processes> mcexec ./a.out
Other MPI¶
Insert mcexec -n <processes-per-node>
after mpirun and before an
executable:
mpirun -n <number-of-MPI-processes> mcexec -n <processes-per-node> ./a.out
<processes-per-node>
is the number of the processes per node and
calculated by (number of MPI processes) / (number of nodes).
For example, <processes-per-node>
equals to 4 (=8/2) when
specifying the number of processes and nodes as follows with
MPICH.
mpirun -n 8 -hosts host1,host2 ./cpi
2.4. (Advanced) When using Utility Thread offloading Interface (UTI)¶
UTI enables a runtime such as MPI runtime to spawn utility threads such as MPI asynchronous progress threads to Linux cores.
Add --enable-uti
option to mcexec
:
mcexec --enable-uti <command>
3. Limitations¶
Pseudo devices such as /dev/mem and /dev/zero are not mmap()ed correctly even if the mmap() returns a success. An access of their mapping receives the SIGSEGV signal.
clone() supports only the following flags. All the other flags cause clone() to return error or are simply ignored.
CLONE_CHILD_CLEARTID
CLONE_CHILD_SETTID
CLONE_PARENT_SETTID
CLONE_SETTLS
CLONE_SIGHAND
CLONE_VM
PAPI has the following restriction.
Number of counters a user can use at the same time is up to the number of the physical counters in the processor.
msync writes back only the modified pages mapped by the calling process.
The following syscalls always return the ENOSYS error.
migrate_pages()
move_pages()
set_robust_list()
The following syscalls always return the EOPNOTSUPP error.
arch_prctl(ARCH_SET_GS)
signalfd()
signalfd4() returns a fd, but signal is not notified through the fd.
set_rlimit sets the limit values but they are not enforced.
Address randomization is not supported.
brk() extends the heap more than requestd when -h (–extend-heap-by=) option of mcexec is used with the value larger than 4 KiB. syscall_pwrite02 of LTP would fail for this reason. This is because the test expects that the end of the heap is set to the same address as the argument of sbrk() and expects a segmentation violation occurs when it tries to access the memory area right next to the boundary. However, the optimization sets the end to a value larger than the requested. Therefore, the expected segmentation violation doesn’t occur.
setpriority()/getpriority() won’t work. They might set/get the priority of a random mcexec thread. This is because there’s no fixed correspondence between a McKernel thread which issues the system call and a mcexec thread which handles the offload request.
mbind() can set the policy but it is not used when allocating physical pages.
MPOL_F_RELATIVE_NODES and MPOL_INTERLEAVE flags for set_mempolicy()/mbind() are not supported.
The MPOL_BIND policy for set_mempolicy()/mbind() works as the same as the MPOL_PREFERRED policy. That is, the physical page allocator doesn’t give up the allocation when the specified nodes are running out of pages but continues to search pages in the other nodes.
Kernel dump on Linux panic requires Linux kernel CentOS-7.4 and later. In addition, crash_kexec_post_notifiers kernel argument must be given to Linux kernel.
setfsuid()/setfsgid() cannot change the id of the calling thread. Instead, it changes that of the mcexec worker thread which takes the system-call offload request.
mmap (hugeTLBfs): The physical pages corresponding to a map are released when no McKernel process exist. The next map gets fresh physical pages.
Sticky bit on executable file has no effect.
Linux (RHEL-7 for x86_64) could hang when offlining CPUs in the process of booting McKernel due to the Linux bug, found in Linux-3.10 and fixed in the later version. One way to circumvent this is to always assign the same CPU set to McKernel.
madvise:
MADV_HWPOISON and MADV_SOFT_OFFLINE always returns -EPERM.
MADV_MERGEABLE and MADV_UNMERGEABLE always returns -EINVAL.
MADV_HUGEPAGE and MADV_NOHUGEPAGE on file map returns -EINVAL except on RHEL-8 for aarch64.
brk() and mmap() doesn’t report out-of-memory through its return value. Instead, page-fault reports the error.
Anonymous mmap pre-maps requested number of pages when contiguous pages are available. Demand paging is used when not available.
ihk_os_getperfevent() could time-out when invoked from Fujitsu TCS (job-scheduler).
The behaviors of madvise and mbind are changed to do nothing and report success as a workaround for Fugaku.
mmap() allows unlimited overcommit. Note that it corresponds to setting sysctl
vm.overcommit_memory
to 1.mlockall() is not supported and returns -EPERM.
munlockall() is not supported and returns zero.
(Fujitsu TCS-only) A job following the one in which __mcctrl_os_read_write_cpu_register() returns
-ETIME
fails because xos_hwb related CPU state isn’t finalized. You can tell if the function returned-ETIME
by checking if the following line appeared in the Linux kernel message:__mcctrl_os_read_write_cpu_register: ERROR sending IKC msg: -62
You can re-initialize xos_hwb related CPU state by the following command:
sudo systemctl restart xos_hwb
System calls can write the mcexec VMAs with PROT_WRITE flag not set. This is because we never turn off PROT_WRITE of the mcexec VMAs to circumvent the issue “set_host_vma(): do NOT read protect Linux VMA”.
procfs entry creation done by Linux work queue could starve when Linux CPUs are flooded with system call offloads. LTP-2019 sendmsg02 causes this issue.
This document will explain how to operate system with McKernel.
1. Installation¶
Follow Quick Guide – Installation.
2. Boot and Shut-down¶
2.2. インターフェイス¶
2.2.1. カーネル引数¶
McKernelのカーネル引数を表 Table 1 に示す。
hidos |
IKCを有効にする。 |
||||
dump_level=<level> |
Linuxのpanicハンドラ経由でダンプを行った場合の、ダ
ンプ対象とするメモリ領域の種類を<level>に設定する。
設定可能な値は以下の通り。
指定がなかった場合は24が用いられる。 |
||||
allow_oversubscribe |
McKernelに割り当てられたCPU数より大きい数のスレッド
またはプロセスの生成を許可する。この引数が指定され
ない場合に、CPU数より大きい数のスレッドまたはプロセ
スをclone(), fork(), vfork()などで生成しようとする
と、当該システムコールがEINVALエラーを返す。
|
2.2.2. ブートスクリプト¶
書式¶
mcreboot.sh -c <cpulist> -r <ikcmap> -m <memlist> -f <facility> -o <chownopt> -i <mon_interval> -k <redirct_kmsg> -q <irq> -t -d <dump_level> -O
オプション¶
-c <list> |
McKernelに割り当てるCPUのリストを指定する。フォー
マットは以下の通り。
<CPU logical id>,<CPU logical id>…または
<CPU logical id>-<CPU logical id>,<CPU logical id>
-<CPU logical id>…または両者の混合。
|
||||
-r <map> |
McKernelのCPUがIKCメッセージを送るLinux
CPUを指定する。フォーマットは以下の通り。
<CPU list>:<CPU id>+<CPU list>:<CPU id>…
<CPU list>のフォーマットは-cオプションにおけるもの
と同じである。
各<CPU list>:<CPU id>は<CPU list>で示されるMcKernel
のCPUが<CPU logical id>で示されるLinuxのCPUにIKC
メッセージを送信することを意味する。
|
||||
-m <list> |
McKernelに割り当てるメモリ領域を指定する。フォーマッ
トは以下の通り。
<size>@<NUMA-id>, <size>@<NUMA-id>…
|
||||
-f <facility> |
ihkmondが使用するsyslogプロトコルのfacilityを指定す
る。デフォルトはLOG_LOCAL6。
|
||||
-o <chownopt> |
IHKのデバイスファイル(/dev/mcd*, /dev/mcos*)のオー
ナーとグループの値を<user>[:<group>]の形式で指定す
る。デフォルトはmcreboot.shを実行したユーザ。
|
||||
-i <interval> |
ihkmondがハングアップ検知のためにOS状態を確認する時
間間隔を秒単位で指定する。-1が指定された場合はハン
グアップ検知を行わない。指定がない場合はハングアッ
プ検知を行わない。
|
||||
-k <redirect_kmsg> |
カーネルメッセージの/dev/logへのリダイレクト有無を
指定する。0が指定された場合はリダイレクトを行わず、
0以外が指定された場合はリダイレクトを行う。指定がな
い場合はリダイレクトを行わない。
|
||||
-q <irq> |
IHKが使用するIRQ番号を指定する。指定がない場合は
64-255の範囲で空いているものを使用する。
|
||||
-t |
(x86_64アーキテクチャのみ)Turbo
Boostをオンにする。デフォルトはオフ。
|
||||
-d <level> |
Linuxのpanicハンドラ経由でダンプを行った場合の、ダ
ンプ対象とするメモリ領域の種類を<level>に設定する。
設定可能な値は以下の通り。
指定がなかった場合は24が用いられる。 |
||||
-O |
McKernelに割り当てられたCPU数より大きい数のスレッド
またはプロセスの生成を許可する。指定がない場合は許可
しない。すなわち、CPU数より大きい数のスレッドまたは
プロセスを生成しようとするとエラーとなる。
|
説明¶
McKernel関連カーネルモジュールをinsmodし、<cpulist>で指定されたCPUと<memlist>で指定されたメモリ領域からなるパーティションを作成し、IKC mapを<ikcmap>に設定し、前記パーティションにMcKernelをブートする。
戻り値¶
0 |
正常終了 |
0以外 |
エラー |
2.2.3. シャットダウンスクリプト¶
2.2.4. プロセス起動コマンド¶
2.2.5. ダンプ解析コマンド¶
2.2.6. ダンプ形式変換コマンド¶
2.3. ブート手順¶
mcreboot.shを用いてブート手順を説明する。
スクリプトは以下の通り。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | #!/bin/bash
# IHK SMP-x86 example boot script.
# author: Balazs Gerofi <bgerofi@riken.jp>
# Copyright (C) 2014 RIKEN AICS
#
# This is an example script for loading IHK, configuring a partition and
# booting McKernel on it. Unless specific CPUs and memory are requested,
# the script reserves half of the CPU cores and 512MB of RAM from
# NUMA node 0 when IHK is loaded for the first time.
# Otherwise, it destroys the current McKernel instance and reboots it using
# the same set of resources as it used previously.
# Note that the script does not output anything unless an error occurs.
prefix="/home/takagi/project/os/install"
BINDIR="${prefix}/bin"
SBINDIR="${prefix}/sbin"
ETCDIR=/home/takagi/project/os/install/etc
KMODDIR="${prefix}/kmod"
KERNDIR="${prefix}/smp-x86/kernel"
ENABLE_MCOVERLAYFS="yes"
mem="512M@0"
cpus=""
ikc_map=""
if [ "${BASH_VERSINFO[0]}" -lt 4 ]; then
echo "You need at least bash-4.0 to run this script." >&2
exit 1
fi
redirect_kmsg=0
mon_interval="-1"
DUMP_LEVEL=24
facility="LOG_LOCAL6"
chown_option=`logname 2> /dev/null`
if [ "`systemctl status irqbalance_mck.service 2> /dev/null |grep -E 'Active: active'`"\
!= "" -o "`systemctl status irqbalance.service 2> /dev/null |grep -E 'Active: active'`"\
!= "" ]; then
irqbalance_used="yes"
else
irqbalance_used="no"
fi
turbo=""
ihk_irq=""
while getopts :tk:c:m:o:f:r:q:i:d: OPT
do
case ${OPT} in
f) facility=${OPTARG}
;;
o) chown_option=${OPTARG}
;;
k) redirect_kmsg=${OPTARG}
;;
c) cpus=${OPTARG}
;;
m) mem=${OPTARG}
;;
r) ikc_map=${OPTARG}
;;
q) ihk_irq=${OPTARG}
;;
t) turbo="turbo"
;;
d) DUMP_LEVEL=${OPTARG}
;;
i) mon_interval=${OPTARG}
;;
*) echo "invalid option -${OPT}" >&2
exit 1
esac
done
# Start ihkmond
pid=`pidof ihkmond`
if [ "${pid}" != "" ]; then
sudo kill -9 ${pid} > /dev/null 2> /dev/null
fi
if [ "${redirect_kmsg}" != "0" -o "${mon_interval}" != "-1" ]; then
${SBINDIR}/ihkmond -f ${facility} -k ${redirect_kmsg} -i ${mon_interval}
fi
#
# Revert any state that has been initialized before the error occured.
#
error_exit() {
local status=$1
case $status in
mcos_sys_mounted)
if [ "$enable_mcoverlay" == "yes" ]; then
umount /tmp/mcos/mcos0_sys
fi
;&
mcos_proc_mounted)
if [ "$enable_mcoverlay" == "yes" ]; then
umount /tmp/mcos/mcos0_proc
fi
;&
mcoverlayfs_loaded)
if [ "$enable_mcoverlay" == "yes" ]; then
rmmod mcoverlay 2>/dev/null
fi
;&
linux_proc_bind_mounted)
if [ "$enable_mcoverlay" == "yes" ]; then
umount /tmp/mcos/linux_proc
fi
;&
tmp_mcos_mounted)
if [ "$enable_mcoverlay" == "yes" ]; then
umount /tmp/mcos
fi
;&
tmp_mcos_created)
if [ "$enable_mcoverlay" == "yes" ]; then
rm -rf /tmp/mcos
fi
;&
os_created)
# Destroy all LWK instances
if ls /dev/mcos* 1>/dev/null 2>&1; then
for i in /dev/mcos*; do
ind=`echo $i|cut -c10-`;
if ! ${SBINDIR}/ihkconfig 0 destroy $ind; then
echo "warning: failed to destroy LWK instance $ind" >&2
fi
done
fi
;&
mcctrl_loaded)
rmmod mcctrl 2>/dev/null || echo "warning: failed to remove mcctrl" >&2
;&
cpus_reserved)
cpus=`${SBINDIR}/ihkconfig 0 query cpu`
if [ "${cpus}" != "" ]; then
if ! ${SBINDIR}/ihkconfig 0 release cpu $cpus > /dev/null; then
echo "warning: failed to release CPUs" >&2
fi
fi
;&
mem_reserved)
mem=`${SBINDIR}/ihkconfig 0 query mem`
if [ "${mem}" != "" ]; then
if ! ${SBINDIR}/ihkconfig 0 release mem $mem > /dev/null; then
echo "warning: failed to release memory" >&2
fi
fi
;&
ihk_smp_loaded)
rmmod ihk_smp_x86 2>/dev/null || echo "warning: failed to remove ihk_smp_x86" >&2
;&
ihk_loaded)
rmmod ihk 2>/dev/null || echo "warning: failed to remove ihk" >&2
;&
irqbalance_stopped)
if [ "`systemctl status irqbalance_mck.service 2> /dev/null |'\
'grep -E 'Active: active'`" != "" ]; then
if ! systemctl stop irqbalance_mck.service 2>/dev/null; then
echo "warning: failed to stop irqbalance_mck" >&2
fi
if ! systemctl disable irqbalance_mck.service >/dev/null 2>/dev/null; then
echo "warning: failed to disable irqbalance_mck" >&2
fi
if ! etcdir=/home/takagi/project/os/install/etc perl -e \
'$etcdir=$ENV{'etcdir'}; @files = grep { -f } glob "$etcdir/proc/irq/*/smp_affinity";'\
' foreach $file (@files) { $dest = substr($file, length($etcdir));'\
' if(0) {print "cp $file $dest\n";} system("cp $file $dest 2>/dev/null"); }'; then
echo "warning: failed to restore /proc/irq/*/smp_affinity" >&2
fi
if ! systemctl start irqbalance.service; then
echo "warning: failed to start irqbalance" >&2;
fi
fi
;&
initial)
# Nothing more to revert
;;
esac
exit 1
}
ihk_ikc_irq_core=0
release=`uname -r`
major=`echo ${release} | sed -e 's/^\([0-9]*\).*/\1/'`
minor=`echo ${release} | sed -e 's/^[0-9]*.\([0-9]*\).*/\1/'`
patch=`echo ${release} | sed -e 's/^[0-9]*.[0-9]*.\([0-9]*\).*/\1/'`
linux_version_code=`expr \( ${major} \* 65536 \) + \( ${minor} \* 256 \) + ${patch}`
rhel_release=`echo ${release} | sed -e 's/^[0-9]*.[0-9]*.[0-9]*-\([0-9]*\).*/\1/'`
if [ "${release}" == "${rhel_release}" ]; then
rhel_release="";
fi
enable_mcoverlay="no"
if [ "${ENABLE_MCOVERLAYFS}" == "yes" ]; then
if [ "${rhel_release}" == "" ]; then
if [ ${linux_version_code} -ge 262144 -a ${linux_version_code} -lt 262400 ]; then
enable_mcoverlay="yes"
fi
if [ ${linux_version_code} -ge 263680 -a ${linux_version_code} -lt 263936 ]; then
enable_mcoverlay="yes"
fi
else
if [ ${linux_version_code} -eq 199168 -a ${rhel_release} -ge 327 -a ${rhel_release} -le 693 ]; then
enable_mcoverlay="yes"
fi
if [ ${linux_version_code} -ge 262144 -a ${linux_version_code} -lt 262400 ]; then
enable_mcoverlay="yes"
fi
fi
fi
# Figure out CPUs if not requested by user
if [ "$cpus" == "" ]; then
# Get the number of CPUs on NUMA node 0
nr_cpus=`lscpu --parse | awk -F"," '{if ($4 == 0) print $4}' | wc -l`
# Use the second half of the cores
let nr_cpus="$nr_cpus / 2"
cpus=`lscpu --parse | awk -F"," '{if ($4 == 0) print $1}' | tail -n $nr_cpus |'\
' xargs echo -n | sed 's/ /,/g'`
if [ "$cpus" == "" ]; then
echo "error: no available CPUs on NUMA node 0?" >&2
exit 1
fi
fi
# Remove mcoverlay if loaded
if [ "$enable_mcoverlay" == "yes" ]; then
if grep mcoverlay /proc/modules &>/dev/null; then
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_sys`" != "" ]; \
then umount -l /tmp/mcos/mcos0_sys; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_proc`" != "" ]; \
then umount -l /tmp/mcos/mcos0_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/linux_proc`" != "" ]; \
then umount -l /tmp/mcos/linux_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos`" != "" ]; then umount -l /tmp/mcos; fi
if [ -e /tmp/mcos ]; then rm -rf /tmp/mcos; fi
if ! rmmod mcoverlay 2>/dev/null; then
echo "error: removing mcoverlay" >&2
exit 1
fi
fi
fi
# Stop irqbalance
if [ "${irqbalance_used}" == "yes" ]; then
systemctl stop irqbalance_mck.service 2>/dev/null
if ! systemctl stop irqbalance.service 2>/dev/null ; then
echo "error: stopping irqbalance" >&2
exit 1
fi;
if ! etcdir=/home/takagi/project/os/install/etc perl -e \
'use File::Copy qw(copy); $etcdir=$ENV{'etcdir'}; '\
'@files = grep { -f } glob "/proc/irq/*/smp_affinity"; foreach $file (@files) { '\
'$rel = substr($file, 1); $dir=substr($rel, 0, length($rel)-length("/smp_affinity")); '\
'if(0) { print "cp $file $etcdir/$rel\n";} if(system("mkdir -p $etcdir/$dir")){ exit 1;} '\
'if(!copy($file,"$etcdir/$rel")){ exit 1;} }'; then
echo "error: saving /proc/irq/*/smp_affinity" >&2
error_exit "mcos_sys_mounted"
fi;
# Prevent /proc/irq/*/smp_affinity from getting zero after offlining
# McKernel CPUs by using the following algorithm.
# if (smp_affinity & mck_cores) {
# smp_affinity = (mck_cores ^ -1);
# }
ncpus=`lscpu | grep -E '^CPU\(s\):' | awk '{print $2}'`
smp_affinity_mask=`echo $cpus | ncpus=$ncpus perl -e \
'while(<>){@tokens = split /,/;foreach $token (@tokens) '\
'{@nums = split /-/,$token; for($num = $nums[0]; $num <= $nums[$#nums]; $num++) {'\
'$ndx=int($num/32); $mask[$ndx] |= (1<<($num % 32))}}}'\
' $nint32s = int(($ENV{'ncpus'}+31)/32); for($j = $nint32s - 1; $j >= 0; $j--) {'\
' if($j != $nint32s - 1){print ",";}'\
' $nblks = ($j != $nint32s - 1) ? 8 : ($ENV{'ncpus'} % 32 != 0) ? '\
'int((($ENV{'ncpus'} + 3) % 32) / 4) : 8;'\
' for($i = $nblks - 1;$i >= 0;$i--){ printf("%01x",($mask[$j] >> ($i*4)) & 0xf);}}'`
# echo cpus=$cpus ncpus=$ncpus smp_affinity_mask=$smp_affinity_mask
if ! ncpus=$ncpus smp_affinity_mask=$smp_affinity_mask perl -e \
'@dirs = grep { -d } glob "/proc/irq/*"; foreach $dir (@dirs) {'\
' $hit = 0; $affinity_str = `cat $dir/smp_affinity`; chomp $affinity_str;'\
' @int32strs = split /,/, $affinity_str; @int32strs_mask=split /,/, $ENV{'smp_affinity_mask'};'\
' for($i=0;$i <= $#int32strs_mask; $i++) {'\
' $int32strs_inv[$i] = sprintf("%08x",hex($int32strs_mask[$i])^0xffffffff);'\
' if($i == 0) { $len = int((($ENV{'ncpus'}%32)+3)/4); if($len != 0) {'\
' $int32strs_inv[$i] = substr($int32strs_inv[$i], -$len, $len); } } }'\
' $inv = join(",", @int32strs_inv); $nint32s = int(($ENV{'ncpus'}+31)/32);'\
' for($j = $nint32s - 1; $j >= 0; $j--) {'\
' if(hex($int32strs[$nint32s - 1 - $j]) & hex($int32strs_mask[$nint32s - 1 - $j])) {'\
' $hit = 1; }} if($hit == 1) {'\
' $cmd = "echo $inv > $dir/smp_affinity 2>/dev/null"; system $cmd;}}'; then
echo "error: modifying /proc/irq/*/smp_affinity" >&2
error_exit "mcos_sys_mounted"
fi
fi
# Load IHK if not loaded
if ! grep -E 'ihk\s' /proc/modules &>/dev/null; then
if ! taskset -c 0 insmod ${KMODDIR}/ihk.ko 2>/dev/null; then
echo "error: loading ihk" >&2
error_exit "irqbalance_stopped"
fi
fi
# Increase swappiness so that we have better chance to allocate memory for IHK
echo 100 > /proc/sys/vm/swappiness
# Drop Linux caches to free memory
sync && echo 3 > /proc/sys/vm/drop_caches
# Merge free memory areas into large, physically contigous ones
echo 1 > /proc/sys/vm/compact_memory 2>/dev/null
sync
# Load IHK-SMP if not loaded and reserve CPUs and memory
if ! grep ihk_smp_x86 /proc/modules &>/dev/null; then
if [ "$ihk_irq" == "" ]; then
for i in `seq 64 255`; do
if [ ! -d /proc/irq/$i ] && \
[ "`cat /proc/interrupts | grep ":" | awk '{print $1}' | grep -o '[0-9]*' | grep -e '^$i$'`"\
== "" ]; then
ihk_irq=$i
break
fi
done
if [ "$ihk_irq" == "" ]; then
echo "error: no IRQ available" >&2
error_exit "ihk_loaded"
fi
fi
if ! taskset -c 0 insmod ${KMODDIR}/ihk-smp-x86.ko ihk_start_irq=$ihk_irq\
ihk_ikc_irq_core=$ihk_ikc_irq_core 2>/dev/null; then
echo "error: loading ihk-smp-x86" >&2
error_exit "ihk_loaded"
fi
# Offline-reonline RAM (special case for OFP SNC-4 mode)
if [ "`hostname | grep "c[0-9][0-9][0-9][0-9].ofp"`" != "" ] && [ "`cat /sys/devices/system/node/online`" == "0-7" ]; then
for i in 0 1 2 3; do
find /sys/devices/system/node/node$i/memory*/ -name "online" |\
while read f; do
echo 0 > $f 2>&1 > /dev/null;
done
find /sys/devices/system/node/node$i/memory*/ -name "online" |\
while read f; do
echo 1 > $f 2>&1 > /dev/null;
done
done
for i in 4 5 6 7; do
find /sys/devices/system/node/node$i/memory*/ -name "online" |\
while read f; do
echo 0 > $f 2>&1 > /dev/null;
done
find /sys/devices/system/node/node$i/memory*/ -name "online" |\
while read f; do
echo 1 > $f 2>&1 > /dev/null;
done
done
fi
if ! ${SBINDIR}/ihkconfig 0 reserve mem ${mem}; then
echo "error: reserving memory" >&2
error_exit "ihk_smp_loaded"
fi
if ! ${SBINDIR}/ihkconfig 0 reserve cpu ${cpus}; then
echo "error: reserving CPUs" >&2;
error_exit "mem_reserved"
fi
fi
# Load mcctrl if not loaded
if ! grep mcctrl /proc/modules &>/dev/null; then
if ! taskset -c 0 insmod ${KMODDIR}/mcctrl.ko 2>/dev/null; then
echo "error: inserting mcctrl.ko" >&2
error_exit "cpus_reserved"
fi
fi
# Destroy all LWK instances
if ls /dev/mcos* 1>/dev/null 2>&1; then
for i in /dev/mcos*; do
ind=`echo $i|cut -c10-`;
# Retry when conflicting with ihkmond
nretry=0
until ${SBINDIR}/ihkconfig 0 destroy $ind || [ $nretry -lt 4 ]; do
sleep 0.25
nretry=$[ $nretry + 1 ]
done
if [ $nretry -eq 4 ]; then
echo "error: destroying LWK instance $ind failed" >&2
error_exit "mcctrl_loaded"
fi
done
fi
# Create OS instance
if ! ${SBINDIR}/ihkconfig 0 create; then
echo "error: creating OS instance" >&2
error_exit "mcctrl_loaded"
fi
# Assign CPUs
if ! ${SBINDIR}/ihkosctl 0 assign cpu ${cpus}; then
echo "error: assign CPUs" >&2
error_exit "os_created"
fi
if [ "$ikc_map" != "" ]; then
# Specify IKC map
if ! ${SBINDIR}/ihkosctl 0 set ikc_map ${ikc_map}; then
echo "error: assign CPUs" >&2
error_exit "os_created"
fi
fi
# Assign memory
if ! ${SBINDIR}/ihkosctl 0 assign mem ${mem}; then
echo "error: assign memory" >&2
error_exit "os_created"
fi
# Load kernel image
if ! ${SBINDIR}/ihkosctl 0 load ${KERNDIR}/mckernel.img; then
echo "error: loading kernel image: ${KERNDIR}/mckernel.img" >&2
error_exit "os_created"
fi
# Set kernel arguments
if ! ${SBINDIR}/ihkosctl 0 kargs "hidos $turbo dump_level=${DUMP_LEVEL}"; then
echo "error: setting kernel arguments" >&2
error_exit "os_created"
fi
# Boot OS instance
if ! ${SBINDIR}/ihkosctl 0 boot; then
echo "error: booting" >&2
error_exit "os_created"
fi
# Set device file ownership
if ! chown ${chown_option} /dev/mcd* /dev/mcos*; then
echo "warning: failed to chown device files" >&2
fi
# Overlay /proc, /sys with McKernel specific contents
if [ "$enable_mcoverlay" == "yes" ]; then
if [ ! -e /tmp/mcos ]; then
mkdir -p /tmp/mcos;
fi
if ! mount -t tmpfs tmpfs /tmp/mcos; then
echo "error: mount /tmp/mcos" >&2
error_exit "tmp_mcos_created"
fi
if [ ! -e /tmp/mcos/linux_proc ]; then
mkdir -p /tmp/mcos/linux_proc;
fi
if ! mount --bind /proc /tmp/mcos/linux_proc; then
echo "error: mount /tmp/mcos/linux_proc" >&2
error_exit "tmp_mcos_mounted"
fi
if ! taskset -c 0 insmod ${KMODDIR}/mcoverlay.ko 2>/dev/null; then
echo "error: inserting mcoverlay.ko" >&2
error_exit "linux_proc_bind_mounted"
fi
while [ ! -e /proc/mcos0 ]
do
sleep 0.1
done
if [ ! -e /tmp/mcos/mcos0_proc ]; then
mkdir -p /tmp/mcos/mcos0_proc;
fi
if [ ! -e /tmp/mcos/mcos0_proc_upper ]; then
mkdir -p /tmp/mcos/mcos0_proc_upper;
fi
if [ ! -e /tmp/mcos/mcos0_proc_work ]; then
mkdir -p /tmp/mcos/mcos0_proc_work;
fi
if ! mount -t mcoverlay mcoverlay -o\
lowerdir=/proc/mcos0:/proc,upperdir=/tmp/mcos/mcos0_proc_upper,\
workdir=/tmp/mcos/mcos0_proc_work,nocopyupw,nofscheck /tmp/mcos/mcos0_proc; then
echo "error: mounting /tmp/mcos/mcos0_proc" >&2
error_exit "mcoverlayfs_loaded"
fi
# TODO: How de we revert this in case of failure??
mount --make-rprivate /proc
while [ ! -e /sys/devices/virtual/mcos/mcos0/sys/setup_complete ]
do
sleep 0.1
done
if [ ! -e /tmp/mcos/mcos0_sys ]; then
mkdir -p /tmp/mcos/mcos0_sys;
fi
if [ ! -e /tmp/mcos/mcos0_sys_upper ]; then
mkdir -p /tmp/mcos/mcos0_sys_upper;
fi
if [ ! -e /tmp/mcos/mcos0_sys_work ]; then
mkdir -p /tmp/mcos/mcos0_sys_work;
fi
if ! mount -t mcoverlay mcoverlay -o\
lowerdir=/sys/devices/virtual/mcos/mcos0/sys:/sys,upperdir=/tmp/mcos/mcos0_sys_upper,\
workdir=/tmp/mcos/mcos0_sys_work,nocopyupw,nofscheck /tmp/mcos/mcos0_sys; then
echo "error: mount /tmp/mcos/mcos0_sys" >&2
error_exit "mcos_proc_mounted"
fi
# TODO: How de we revert this in case of failure??
mount --make-rprivate /sys
touch /tmp/mcos/mcos0_proc/mckernel
rm -rf /tmp/mcos/mcos0_sys/setup_complete
# Hide NUMA related files which are outside the LWK partition
for cpuid in \
`find /sys/devices/system/cpu/* -maxdepth 0 -name "cpu[0123456789]*" -printf "%f "`; do
if [ ! -e "/sys/devices/virtual/mcos/mcos0/sys/devices/system/cpu/$cpuid" ]; then
rm -rf /tmp/mcos/mcos0_sys/devices/system/cpu/$cpuid
rm -rf /tmp/mcos/mcos0_sys/bus/cpu/devices/$cpuid
rm -rf /tmp/mcos/mcos0_sys/bus/cpu/drivers/processor/$cpuid
else
for nodeid in \
`find /sys/devices/system/cpu/$cpuid/* -maxdepth 0 -name "node[0123456789]*" -printf "%f "`; do
if [ ! -e \
"/sys/devices/virtual/mcos/mcos0/sys/devices/system/cpu/$cpuid/$nodeid" ]; then
rm -f \
/tmp/mcos/mcos0_sys/devices/system/cpu/$cpuid/$nodeid
fi
done
fi
done
for nodeid in \
`find /sys/devices/system/node/* -maxdepth 0 -name "node[0123456789]*" -printf "%f "`; do
if [ ! -e "/sys/devices/virtual/mcos/mcos0/sys/devices/system/node/$nodeid" ]; \
then
rm -rf /tmp/mcos/mcos0_sys/devices/system/node/$nodeid/*
rm -rf /tmp/mcos/mcos0_sys/bus/node/devices/$nodeid
else
# Delete non-existent symlinks
for cpuid in \
`find /sys/devices/system/node/$nodeid/* -maxdepth 0 -name "cpu[0123456789]*" -printf "%f "`; do
if [ ! -e \
"/sys/devices/virtual/mcos/mcos0/sys/devices/system/node/$nodeid/$cpuid" ]; then
rm -f \
/tmp/mcos/mcos0_sys/devices/system/node/$nodeid/$cpuid
fi
done
rm -f /tmp/mcos/mcos0_sys/devices/system/node/$nodeid/memory*
fi
done
rm -f /tmp/mcos/mcos0_sys/devices/system/node/has_*
for cpuid in \
`find /sys/bus/cpu/devices/* -maxdepth 0 -name "cpu[0123456789]*" -printf "%f "`; do
if [ ! -e "/sys/devices/virtual/mcos/mcos0/sys/bus/cpu/devices/$cpuid" ]; then
rm -rf /tmp/mcos/mcos0_sys/bus/cpu/devices/$cpuid
fi
done
fi
# Start irqbalance with CPUs and IRQ for McKernel banned
if [ "${irqbalance_used}" == "yes" ]; then
banirq=`cat /proc/interrupts| \
perl -e 'while(<>) { if(/^\s*(\d+).*IHK\-SMP\s*$/) {print $1;}}'`
sed "s/%mask%/$smp_affinity_mask/g" $ETCDIR/irqbalance_mck.in | \
sed "s/%banirq%/$banirq/g" > /tmp/irqbalance_mck
systemctl disable irqbalance_mck.service >/dev/null 2>/dev/null
if ! systemctl link $ETCDIR/irqbalance_mck.service >/dev/null 2>/dev/null; then
echo "error: linking irqbalance_mck" >&2
error_exit "mcos_sys_mounted"
fi
if ! systemctl start irqbalance_mck.service 2>/dev/null ; then
echo "error: starting irqbalance_mck" >&2
error_exit "mcos_sys_mounted"
fi
# echo cpus=$cpus ncpus=$ncpus banirq=$banirq
fi
|
手順は以下の通り。
ihkmondを起動する。ihkmondは任意のタイミングで起動してよい。これは、ihkmondはOSインスタンスの作成を検知して動作を開始するためである。(83行目)
Linuxのカーネルバージョンが、mcoverlayfsが動作するものであるかを確認する。(200–216行目)
irqbalanceを停止する。(251–257行目)
/proc/irq/[n]/affinityの設定を保存した上でMcKernel CPUを担当から外す。担当CPUが無くなる場合は、全てのLinux CPUを指定する。(269–303行目)
ihk.koをinsmodする。(307行目)
Linuxによるメモリフラグメンテーションを緩和するために以下を実施する。(313–320行目)
アクティブでないプロセスを積極的にスワップアウトするように設定する
クリーンなページキャッシュを無効化し、またdentriesやinodeのslabオブジェクトのうち可能なものを破棄する
連続する空き領域を結合してより大きな空き領域にまとめる
ihk-smp-x86.koをinsmodする。(340行目)ihk-smp-x86.koは関数をihk.koに登録する。このため、ihk-smp-x86.koはihk.koをinsmodした後にinsmodする必要がある。
メモリを予約する。(370行目)
CPUを予約する。(374行目)
McKernelのカーネルモジュールmcctrl.koをinsmodする。(382行目)mcctrl.koはMcKernelブート時に呼ばれる関数をihk.koに登録する。このため、mcctrl.koのinsmodはihk.koのinsmodの後に、またブートの前に行う必要がある。
OSインスタンスを作成する。(406行目)
OSインスタンスにCPUを割り当てる。(412行目)
McKernel CPUのIKCメッセージ送信先のLinux CPUを設定する。(419行目)
OSインスタンスにメモリを割り当てる。(426行目)
カーネルイメージをロードする。(432行目)
カーネル引数をカーネルに渡す。(438行目)
カーネルをブートする。(444行目)
/proc, /sysファイルの準備をする。また、その中でmcoverlayfs.koをinsmodする。mcoverlayfs.koは他モジュールとの依存関係を持たない。(454行目から567行目)なお、関数インターフェイスでの対応関数はihk_os_create_pseudofs()である。
irqbalanceを、Linux CPUのみを対象とする設定で開始する。(569–587行目)
2.4. シャットダウン手順¶
mcstop+release.shを用いてシャットダウン手順を説明する。
スクリプトは以下の通り。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | #!/bin/bash
# IHK SMP-x86 example McKernel unload script.
# author: Balazs Gerofi <bgerofi@riken.jp>
# Copyright (C) 2015 RIKEN AICS
#
# This is an example script for destroying McKernel and releasing IHK resources
# Note that the script does no output anything unless an error occurs.
prefix="/home/takagi/project/os/install"
BINDIR="/home/takagi/project/os/install/bin"
SBINDIR="/home/takagi/project/os/install/sbin"
ETCDIR=/home/takagi/project/os/install/etc
KMODDIR="/home/takagi/project/os/install/kmod"
KERNDIR="/home/takagi/project/os/install/smp-x86/kernel"
mem=""
cpus=""
irqbalance_used=""
# No SMP module? Exit.
if ! grep ihk_smp_x86 /proc/modules &>/dev/null; then exit 0; fi
if [ "`systemctl status irqbalance_mck.service 2> /dev/null |grep -E 'Active: active'`" \
!= "" ]; then
irqbalance_used="yes"
if ! systemctl stop irqbalance_mck.service 2>/dev/null; then
echo "warning: failed to stop irqbalance_mck" >&2
fi
if ! systemctl disable irqbalance_mck.service >/dev/null 2>/dev/null; then
echo "warning: failed to disable irqbalance_mck" >&2
fi
fi
# Destroy all LWK instances
if ls /dev/mcos* 1>/dev/null 2>&1; then
for i in /dev/mcos*; do
ind=`echo $i|cut -c10-`;
# Retry when conflicting with ihkmond
nretry=0
until ${SBINDIR}/ihkconfig 0 destroy $ind || [ $nretry -lt 4 ]; do
sleep 0.25
nretry=$[ $nretry + 1 ]
done
if [ $nretry -eq 4 ]; then
echo "error: destroying LWK instance $ind failed" >&2
exit 1
fi
done
fi
# Query IHK-SMP resources and release them
if ! ${SBINDIR}/ihkconfig 0 query cpu > /dev/null; then
echo "error: querying cpus" >&2
exit 1
fi
cpus=`${SBINDIR}/ihkconfig 0 query cpu`
if [ "${cpus}" != "" ]; then
if ! ${SBINDIR}/ihkconfig 0 release cpu $cpus > /dev/null; then
echo "error: releasing CPUs" >&2
exit 1
fi
fi
if ! ${SBINDIR}/ihkconfig 0 query mem > /dev/null; then
echo "error: querying memory" >&2
exit 1
fi
mem=`${SBINDIR}/ihkconfig 0 query mem`
if [ "${mem}" != "" ]; then
if ! ${SBINDIR}/ihkconfig 0 release mem $mem > /dev/null; then
echo "error: releasing memory" >&2
exit 1
fi
fi
# Remove delegator if loaded
if grep mcctrl /proc/modules &>/dev/null; then
if ! rmmod mcctrl 2>/dev/null; then
echo "error: removing mcctrl" >&2
exit 1
fi
fi
# Remove mcoverlay if loaded
if grep mcoverlay /proc/modules &>/dev/null; then
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_sys`" != "" ]; \
then umount -l /tmp/mcos/mcos0_sys; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/mcos0_proc`" != "" ]; \
then umount -l /tmp/mcos/mcos0_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos/linux_proc`" != "" ]; \
then umount -l /tmp/mcos/linux_proc; fi
if [ "`cat /proc/mounts | grep /tmp/mcos`" != "" ]; then umount -l /tmp/mcos; fi
if [ -e /tmp/mcos ]; then rm -rf /tmp/mcos; fi
if ! rmmod mcoverlay 2>/dev/null; then
echo "warning: failed to remove mcoverlay" >&2
fi
fi
# Remove SMP module
if grep ihk_smp_x86 /proc/modules &>/dev/null; then
if ! rmmod ihk_smp_x86 2>/dev/null; then
echo "error: removing ihk_smp_x86" >&2
exit 1
fi
fi
# Remove core module
if grep -E 'ihk\s' /proc/modules &>/dev/null; then
if ! rmmod ihk 2>/dev/null; then
echo "error: removing ihk" >&2
exit 1
fi
fi
# Stop ihkmond
pid=`pidof ihkmond`
if [ "${pid}" != "" ]; then
sudo kill -9 ${pid} > /dev/null 2> /dev/null
fi
# Start irqbalance with the original settings
if [ "${irqbalance_used}" != "" ]; then
if ! etcdir=/home/takagi/project/os/install/etc perl -e \
'$etcdir=$ENV{'etcdir'}; @files = grep { -f } glob "$etcdir/proc/irq/*/smp_affinity";'\
' foreach $file (@files) { $dest = substr($file, length($etcdir));'\
' if(0) {print "cp $file $dest\n";} system("cp $file $dest 2>/dev/null"); }'; then
echo "warning: failed to restore /proc/irq/*/smp_affinity" >&2
fi
if ! systemctl start irqbalance.service; then
echo "warning: failed to start irqbalance" >&2;
fi
fi
# Set back default swappiness
echo 60 > /proc/sys/vm/swappiness
|
手順は以下の通り。
ブート時にLinux CPUのみを対象とする設定で開始されたirqbalanceを停止する。(24–33行目)
全てのOSインスタンスを破壊する。OSインスタンスに割り当てられていた資源はIHKがLWKのために予約した状態に移行する。(35–50行目)
IHKがLWKのために予約していた資源を開放する。(52–77行目)
mcctrl.koをrmmodする。(81行目)
/proc, /sysファイルの準備をする。また、その中でmcoverlayfs.koをrmmodする。(87–100行目)なお、関数インターフェイスでの対応関数はihk_os_destroy_pseudofs()である。
ihk-smp-x86.koをrmmodする。(104行目)
ihk.koをrmmodする。(112行目)
ihkmondを停止する。(121行目)
/proc/irq/[n]/affinityの設定をブート時に保存しておいたものに戻し、ブート前の設定でirqbalanceを開始する。(124–135行目)
Linuxカーネルのスワップアウト積極度の設定をデフォルトの値に戻す。(138行目)
Version 1.7.9 (Mar 17, 2021)¶
IHK major updates¶
N/A
IHK major bug fixes¶
ihklib: ihk_reserve_mem_conf*: fix default values
smp_ihk_os_shutdown: fix memory leak
smp_ihk_os_shutdown: prevent double free
__ihk_os_shutdown: fix smp_ihk_os_shutdown()-related double free
smp_ihk_os_panic_notifier: exclude memory from Linux dump with default setting
smp_ihk_os_panic_notifier: exclude memory from Linux dump while booting, on timeout
McKernel major updates¶
N/A
McKernel major bug fixes¶
mcctrl_wakeup_desc: refcount and fix timeouts
Version 1.7.8 (Mar 12, 2021)¶
IHK major updates¶
N/A
IHK major bug fixes¶
ihklib: ihk_reserve_cpu: fix job cpu check when using krm
McKernel major updates¶
N/A
McKernel major bug fixes¶
N/A
Version 1.7.7 (Mar 11, 2021)¶
IHK major updates¶
N/A
IHK major bug fixes¶
N/A
McKernel major updates¶
N/A
McKernel major bug fixes¶
mcexec: fput executable just after its contents is transferred
spec: cmake-config cmake parameters
Version 1.7.6 (Mar 11, 2021)¶
IHK major updates¶
N/A
IHK major bug fixes¶
ihklib: ihk_reserve_mem_conf*: apply change only to the next reservation
McKernel major updates¶
N/A
McKernel major bug fixes¶
N/A
Version 1.7.5 (Mar 11, 2021)¶
IHK major updates¶
N/A
IHK major bug fixes¶
ihklib: fix cgroup cpuset.cpus/mems check when using krm
ihklib: ihk_reserve_mem_conf_str: set default values to those not specified
McKernel major updates¶
N/A
McKernel major bug fixes¶
N/A
Version 1.7.4 (Mar 7, 2021)¶
IHK major updates¶
N/A
IHK major bug fixes¶
N/A
McKernel major updates¶
N/A
McKernel major bug fixes¶
N/A
Version 1.7.3 (Mar 5, 2021)¶
IHK major updates¶
N/A
IHK major bug fixes¶
N/A
McKernel major updates¶
N/A
McKernel major bug fixes¶
N/A
Version 1.7.2 (Mar 5, 2021)¶
IHK major updates¶
ihklib: add *_str() functions for reserve, assign, IKC-map, kargs
smp: make smp_call_func() arch independent
IHK major bug fixes¶
ihklib: ihk_reserve_mem: fix capped best-effort
TO RESET: fake missing NUMA node pieces, 90% memory limit
ihklib: ihk_reserve_mem_conf: range-check for IHK_RESERVE_MEM_MAX_SIZE_RATIO_ALL
ihklib: ihk_os_kargs: check if “hidos” is included
SMP: omit slab/slub shrink, use 95% limit by default
check cpu / numa cgroup set by krm
SMP: __ihk_smp_reserve_mem: add __GFP_COMP to __GFP_ATOMIC allocation
ihk_register_device: record minor to IHK device object
McKernel major updates¶
mcexec: memory policy control by environmental variable
mempolicy: Support MPOL_INTERLEAVE
uti: futex call function in mcctrl
uti: integrate libuti and redirect to mck/libuti.so
uti: integrate syscall_intercept
shmobj: support large page
xpmem: support large page
MM: handle zero_at_free in page faults
McKernel major bug fixes¶
TO RESET: stack changes
Tofu: keep track of stags per memory range
Tofu: match page sizes to MBPT and fault PTEs if not present
Tofu: fix phys addr calculation for contiguous pages in MBPT/BCH update
rus_vm_fault: vmf_insert_pfn: treat VM_FAULT_NOPAGE as success
Tofu: mcctrl side MMU notifier and CQ/BCH cleanup
copy_user_ranges: copy straight_start of struct vm_range
mcctrl: abort on invalid addr in mcexec_transfer_image()
mcctrl: fix access to uninitialized usrdata->cpu_topology_list
mcexec: propagate error in __NR_gettid handler
mcexec_transfer_image(): map exact size of remote memory (instead of forcing PAGE_SIZE)
xpmem: fault stack area of remote process if VM range doesn’t yet exist
Tofu: fault stack area if VM range doesn’t exist in STAG registration
__mcctrl_os_read_write_cpu_register: fix timeout
mbind: Use range_policy’s numamask as priority on MPOL_BIND
migrate: Don’t migrate on in-kernel interrupt
Send a signal to mcexec after switching to that process.
uti: fix syscall response is mis-consumed by __do_in_kernel_irq_syscall
uti: fix handling UTI_CPU_SET env
do_execveat: kill instead of panic when init_process_stack fails
remote_page_fault is handled by the offloaded thread.
coredump: fix behavior when gencore fail
xpmem: truncates the size of xpmem_attach at the page boundary (workaround for fjmpi)
__mcctrl_os_read_write_cpu_register: spin timeout in mcctrl_ikc_send_wait()
Version 1.7.1 (Dec 23, 2020)¶
IHK major updates¶
d5d5c23 Tofu: support for barrier gate
Tofu: proper cleanup of premapped DMA regions
Tofu: initial version
SMP: try with GFP_ATOMIC as well in mem reserve
IHK major bug fixes¶
ihklib: ihk(_os)_query_{cpu,mem}: allow to pass empty array
SMP: non compound page free and GFP_ATOMIC
ihk_get_num_os_instances: don’t open /dev/mcdN
ihklib: ihk_create_os_str: fix variable prefix
McKernel major updates¶
stragiht map: creates a straight map covering the whole physical memory, and gives virtual address ranges out of it to maps to which physical pages are allocated on map
free-time, lazy, potentially Linux-side page-zeroing
Tofu built-in driver: supports memory registration and barrier gate setup
kmalloc cache
McKernel major bug fixes¶
mmap: return -EINVAL for non-anonymous, MAP_HUGETLB map
kernel: increase stack size
Tofu: proper cleanup of device files when mcexec gets killed
Version 1.7.0 (Nov 25, 2020)¶
IHK major updates¶
ihklib: add ihk_create_os_str
ihklib: ihk_reserve_mem: add capped best effort to balanced
IHK major bug fixes¶
make /dev/mcdN sharable
acpi: compat: RHEL-8.2
gic_chip_data: compat: RHEL-8.3
McKernel major updates¶
arm64: Contiguous PTE support
arm64: Scalable Vector Extension (SVE) support
arm64: PMU overflow interrupt support
arm64 port: Direct access to Mckernel memory from Linux
arm64 port: utility thread offloading, which spawns thread onto Linux CPU
eclair: support for live debug
Crash utility extension
Replace mcoverlayfs with a soft userspace overlay
Build system is switched to cmake
Core dump includes thread information
mcinspect and mcps: DWARF based LWK inspection
McKernel major bug fixes¶
shmobj: Fix rusage counting for large page
mcctrl control: task start_time changed to u64 nsec
mcctrl: add handling for one more level of page tables
Add kernel argument to turn on/off time sharing
flatten_string / process env: realign env and clear trailing bits
madvise: Add MADV_HUGEPAGE support
mcctrl: remove in-kernel calls to syscalls
arch_cpu_read_write_register: error return fix.
set_cputime(): interrupt enable/disable fix.
set_mempolicy(): Add mode check.
mbind(): Fix memory_range_lock deadlock.
ihk_ikc_recv: Record channel to packet for release
Add set_cputime() kernel to kernel case and mode enum.
execve: Call preempt_enable() before error-exit
memory/x86_64: fix linux safe_kernel_map
do_kill(): fix pids table when nr of threads is larger than num_processors
shmget: Use transparent huge pages when page size isn’t specified
prctl: Add support for PR_SET_THP_DISABLE and PR_GET_THP_DISABLE
monitor_init: fix undetected hang on highest numbered core
init_process_stack: change premapped stack size based on arch
x86 syscalls: add a bunch of XXat() delegated syscalls
do_pageout: fix direct kernel-user access
stack: add hwcap auxval
perf counters: add arch-specific perf counters
Added check of nohost to terminate_host().
kmalloc: Fix address order in free list
sysfs: use nr_cpu_ids for cpumasks (fixes libnuma parsing error on ARM)
monitor_init: Use ihk_mc_cpu_info()
Fix ThunderX2 write-combined PTE flag insanity
ARM: eliminate zero page mapping (i.e, init_low_area())
eliminate futex_cmpxchg_enabled check (not used and dereffed a NULL pointer)
page_table: Fix return value of lookup_pte when ptl4 is blank
sysfs: add missing symlinks for cpu/node
Make Linux handler run when mmap to procfs.
Separate mmap area from program loading (relocation) area
move rusage into kernel ELF image (avoid dynamic alloc before NUMA init)
arm: turn off cpu on panic
page fault handler: protect thread accesses
Register PPD and release_handler at the same time.
fix to missing exclusive processing between terminate() and finalize_process().
perfctr_stop: add flags to no ‘disable_intens’
fileobj, shmobj: free pages in object destructor (as opposed to page_unmap())
clear_range_l1, clear_range_middle: Fix handling contiguous PTE
do_mmap: don’t pre-populate the whole file when asked for smaller segment
invalidate_one_page: Support shmobj and contiguous PTE
ubsan: fix undefined shifts
x86: disable zero mapping and add a boot pt for ap trampoline
rusage: Don’t count PF_PATCH change
Fixed time processing.
copy_user_pte: vmap area not owned by McKernel
gencore: Zero-clear ELF header and memory range table
rpm: ignore CMakeCache.txt in dist and relax BuildRequires on cross build
gencore: Allocate ELF header to heap instead of stack
nanosleep: add cpu_pause() in spinwait loop
init_process: add missing initializations to proc struct
rus_vm_fault: always use a packet on the stack
process stack: use PAGE_SIZE in aux vector
copy_user_pte: base memobj copy on range & VR_PRIVATE
arm64: ptrace: Fix overwriting 1st argument with return value
page fault: use cow for private device mappings
reproductible builds: remove most install paths in c code
page fault: clear writable bit for non-dirtying access to shared ranges
mcreboot/mcstop+release: support for regular user execution
irqbalance_mck: replace extra service with service drop-in
do_mmap: give addr argument a chance even if not MAP_FIXED
x86: fix xchg() and cmpxchg() macros
IHK: support for using Linux work IRQ as IKC interrupt (optional)
MCS: fix ARM64 issue by using smp_XXX() functions (i.e., barrier()s)
procfs: add number of threads to stat and status
memory_range_lock: Fix deadlock in procfs/sysfs handler
flush instruction cache at context switch time if necessary
arm64: Fix PMU related functions
page_fault_process_memory_range: Disable COW for VM region with zeroobj
extend_process_region: Fall back to demand paging when not contiguous
munmap: fix deadlock with remote pagefault on vm range lock
procfs: if memory_range_lock fails, process later
migrate-cpu: Prevent migration target from calling schedule() twice
sched_request_migrate(): fix race condition between migration req and IRQs
get_one_cpu_topology: Renumber core_id (physical core id)
bb7e140 procfs cpuinfo: use sequence number as processor
set_host_vma(): do NOT read protect Linux VMA
hugefileobj: rewrite page allocation/handling
VM: use RW spinlock for vm_range_lock
/dev/shm: use Linux PFNs and populate mappings
Make struct ihk_os_rusage compatible with mckernel_rusage (workaround for Fugaku)
Record pthread routine address in clone(), keep helper threads on caller CPU core (workaround for Fugaku)
struct process: fix type of group_exit_status
tgkill: Fix argument validatation
set_robust_list: Add error check
mcexec: Don’t forward SIGTSTP SIGTTIN SIGTTOUT to mckernel
syscall: add prlimit64
stack: grow on page fault
mcexec: use FLIB_NUM_PROCESS_ON_NODE when -n not specified (Fugaku specific)
Version 1.6.0 (Nov 11, 2018)¶
McKernel major updates¶
McKernel and Linux share one unified kernel virtual address space. That is, McKernel sections resides in Linux sections spared for modules. In this way, Linux can access the McKernel kernel memory area.
hugetlbfs support
IHK is now included as a git submodule
Debug messages are turned on/off in per souce file basis at run-time.
It’s prohibited for McKernel to access physical memory ranges which Linux didn’t give to McKernel.
UTI (capability to spawn a thread on Linux CPU) improvement:
System calls issued from the thread are hooked by modifying binary in memory.
McKernel major bug fixes¶
#<digits> below denotes the redmine issue number (https://postpeta.pccluster.org/redmine/).
#926: shmget: Hide object with IPC_RMID from shmget
#1028: init_process: Inherit parent cpu_set
#995: Fix shebang recorded in argv[0]
#1024: Fix VMAP virtual address leak
#1109: init_process_stack: Support “ulimit -s unlimited”
x86 mem init: do not map identity mapping
mcexec_wait_syscall: requeue potential request on interrupted wait
mcctrl_ikc_send_wait: fix interrupt with do_frees == NULL
pager_req_read: handle short read
kprintf: only call eventfd() if it is safe to interrupt
process_procfs_request: Add Pid to /proc/<PID>/status
terminate: fix oversubscribe hang when waiting for other threads on same CPU to die
mcexec: Do not close fd returned to mckernel side
#976: execve: Clear sigaltstack and fp_regs
#1002: perf_event: Specify counter by bit_mask on start/stop
#1027: schedule: Don’t reschedule immediately when wake up on migrate
#mcctrl: lookup unexported symbols at runtime
__sched_wakeup_thread: Notify interrupt_exit() of re-schedule
futex_wait_queue_me: Spin-sleep when timeout and idle_halt is specified
#1167: ihk_os_getperfevent,setperfevent: Timeout IKC sent by mcctrl
devobj: fix object size (POSTK_DEBUG_TEMP_FIX_36)
mcctrl: remove rus page cache
#1021: procfs: Support multiple reads of e.g.
/proc/*/maps
#1006: wait: Delay wake-up parent within switch context
#1164: mem: Check if phys-mem is within the range of McKernel memory
#1039: page_fault_process_memory_range: Remove ihk_mc_map_virtual for CoW of device map
partitioned execution: pass process rank to LWK
process/vm: implement access_ok()
spinlock: rewrite spinlock to use Linux ticket head/tail format
#986: Fix deadlock involving mmap_sem and memory_range_lock
Prevent one CPU from getting chosen by concurrent forks
#1009: check_signal: system call restart is done only once
#1176: syscall: the signal received during system call processing is not processed.
#1036 syscall_time: Handle by McKernel
#1165 do_syscall: Delegate system calls to the mcexec with the same pid
#1194 execve: Fix calling ptrace_report_signal after preemption is disabled
#1005 coredump: Exclude special areas
#1018 procfs: Fix pread/pwrite to procfs fail when specified size is bigger than 4MB
#1180 sched_setaffinity: Check migration after decrementing in_interrupt
#771, #1179, #1143 ptrace supports threads
#1189 procfs/do_fork: wait until procfs entries are registered
#1114 procfs: add ‘/proc/pid/stat’ to mckernel side and fix its comm
#1116 mcctrl procfs: check entry was returned before using it
#1167 ihk_os_getperfevent,setperfevent: Return -ETIME when IKC timeouts
mcexec/execve: fix shebangs handling
procfs: handle ‘comm’ on mckernel side
ihk_os_setperfevent: Return number of registered events
mcexec: fix terminating zero after readlink()
Version 1.5.1 (July 9, 2018)¶
McKernel major updates¶
Watchdog timer to detect hang of McKernel¶
mcexec prints out the following line to its stderr when a hang of McKernel is detected.
mcexec detected hang of McKernel
The watchdog timer is enabled by passing -i <timeout_in_sec> option to mcreboot.sh. <timeout_in_sec> specifies the interval of checking if McKernel is alive.
For example, specify -i 600
to detect the hang with 10 minutes interval:
mcreboot.sh -i 600
- The detailed step of the hang detection is as follows.
mcexec acquires eventfd for notification from IHK and perform epoll() on it.
A daemon called ihkmond monitors the state of McKernel periodically with the interval specified by the -i option. It judges that McKernel is hanging and notifies mcexec by the eventfd if its state hasn’t changed since the last check.
McKernel major bug fixes¶
#1146: pager_req_map(): do not take mmap_sem if not needed
#1135: prepare_process_ranges_args_envs(): fix saving cmdline
#1144: fileobj/devobj: record path name
#1145: fileobj: use MCS locks for per-file page hash
#1076: mcctrl: refactor prepare_image into new generic ikc send&wait
#1072: execve: fix execve with oversubscribing
#1132: execve: use thread variable instead of cpu_local_var(current)
#1117: mprotect: do not set page table writable for cow pages
#1143: syscall wait4: add _WALL (POSTK_DEBUG_ARCH_DEP_44)
#1064: rusage: Fix initialization of rusage->num_processors
#1133: pager_req_unmap: Put per-process data at exit
#731: do_fork: Propagate error code returned by mcexec
#1149: execve: Reinitialize vm_regions’s map area on execve
#1065: procfs: Show file names in /proc/<PID>/maps
#1112: mremap: Fix type of size arguments (from ssize_t to size_t)
#1121: sched_getaffinity: Check arguments in the same order as in Linux
#1137: mmap, mremap: Check arguments in the same order as in Linux
#1122: fix return value of sched_getaffinity
#732: fix: /proc/<PID>/maps outputs a unnecessary NULL character
Version 1.5.0 (Apr 5, 2018)¶
McKernel major updates¶
Aid for Linux version migration: Detect /proc, /sys format change between two kernel verions
Swap out * Only swap-out anonymous pages for now
Improve support of /proc/maps
mcstat: Linux tool to show resource usage
McKernel major bug fixes¶
#727: execve: Fix memory leak when receiving SIGKILL
#829: perf_event_open: Support PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
#906: mcexec: Check return code of fork()
#1038: mcexec: Timeout when incorrect value is given to -n option
#943 #945 #946 #960 #961: mcexec: Support strace
#1029: struct thread is not released with stress-test involving signal and futex
#863 #870 : Respond immediately to terminating signal when offloading system call
#1119: translate_rva_to_rpa(): use 2MB blocks in 1GB pages on x86
#898: Shutdown OS only after no in-flight IKC exist
#882: release_handler: Destroy objects as the process which opened it
#882: mcexec: Make child process exit if the parent is killed during fork()
#925: XPMEM: Don’t destroy per-process object of the parent
#885: ptrace: Support the case where a process attaches its child
#1031: sigaction: Support SA_RESETHAND
#923: rus_vm_fault: Return error when a thread not performing system call offloading causes remote page fault
#1032 #1033 #1034: getrusage: Fix ru_maxrss, RUSAGE_CHILDREN, ru_stime related bugs
#1120: getrusage: Fix deadlock on thread->times_update
#1123: Fix deadlock related to wait_queue_head_list_node
#1124: Fix deadlock of calling terminate() from terminate()
#1125: Fix deadlock related to thread status
Related functions are: hold_thread(), do_kill() and terminate()
#1126: uti: Fix uti thread on the McKernel side blocks others in do_syscall()
#1066: procfs: Show Linux /proc/self/cgroup
#1127: prepare_process_ranges_args_envs(): fix generating saved_cmdline to avoid PF in strlen()
#1128: ihk_mc_map/unmap_virtual(): do proper TLB invalidation
#1043: terminate(): fix update_lock and threads_lock order to avoid deadlock
#1129: mcreboot.sh: Save
/proc/irq/*/smp_affinity
to/tmp/mcreboot
#1130: mcexec: drop READ_IMPLIES_EXEC from personality
McKernel workarounds¶
Forbid CPU oversubscription
It can be turned on by mcreboot.sh -O option
Version 1.4.0 (Oct 30, 2017)¶
Abstracted event type support in perf_event_open()¶
PERF_TYPE_HARDWARE and PERF_TYPE_CACHE types are supported.
Direct user-space access¶
Code lines using direct user-space access (e.g. passing user-space pointer to memcpy()) becomes more portable across processor architectures. The modification follows the following rules.
Move the code section as it is to the architecture dependent directory if it is a part of the critical-path.
Otherwise, rewrite the code section by using the portable methods. The methods include copy_from_user(), copy_to_user(), pte_get_phys() and phys_to_virt().
MPI and OpenMP micro-bench tests¶
The performance figures of MPI and OpenMP primitives are compared with those of Linux by using Intel MPI Benchmarks and EPCC OpenMP Micro Benchmark.
Version 1.3.0 (Sep 30, 2017)¶
Kernel dump¶
A dump level of “only kernel memory” is added.
The following two levels are available now:
0 |
Dump all |
24 |
Dump only kernel memory |
The dump level can be set by -d option in ihkosctl or the argument for ihk_os_makedumpfile(), as shown in the following examples:
Command: ihkosctl 0 dump -d 24
Function call: ihk_os_makedumpfile(0, NULL, 24, 0);
Dump file is created when Linux panics.
The dump level can be set by dump_level kernel argument, as shown in the following example:
ihkosctl 0 kargs "hidos dump_level=24"
The IHK dump function is registered to panic_notifier_list when creating /dev/mcdX and called when Linux panics.
Quick Process Launch¶
MPI process launch time and some of the initialization time can be reduced in application consisting of multiple MPI programs which are launched in turn in the job script.
The following two steps should be performed to use this feature: #. Replace mpiexec with ql_mpiexec_start and add some lines for ql_mpiexec_finalize in the job script #. Modify the app so that it can repeat calculations and wait for the instructions from ql_mpiexec_{start,finalize} at the end of the loop
The first step is explained using an example. Assume the original job script looks like this:
/* Execute ensamble simulation and then data assimilation, and repeat this ten times */
for i in {1..10}; do
/* Each ensamble simulation execution uses 100 nodes, launch ten of them in parallel */
for j in {1..10}; do
mpiexec -n 100 -machinefile ./list1_$j p1.out a1 & pids[$i]=$!;
done
/* Wait until the ten ensamble simulation programs finish */
for j in {1..10}; do wait ${pids[$j]}; done
/* Launch one data assimilation program using 1000 nodes */
mpiexec -n 1000 -machinefile ./list2 p2.out a2
done
The job script should be modified like this:
for i in {1..10}; do
for j in {1..10}; do
/* Replace mpiexec with ql_mpiexec_start */
ql_mpiexec_start -n 100 -machinefile ./list1_$j p1.out a1 & pids[$j]=$!;
done
for j in {1..10}; do wait ${pids[$j]}; done
ql_mpiexec_start -n 1000 -machinefile ./list2 p2.out a2
done
/* p1.out and p2.out don't exit but are waiting for the next calculation. So tell them to exit */
for j in {1..10}; do
ql_mpiexec_finalize -machinefile ./list1_$i p1.out a1;
done
ql_mpiexec_finalize -machinefile ./list2 p2.out a2;
The second step is explained using a pseudo-code.
MPI_Init();
Prepare data exchange with preceding / following MPI programs
loop:
foreach Fortran module
Initialize data using command-line argments, parameter files, environment variables
Input data from preceding MPI programs / Read snap-shot
Perform main calculation
Output data to following MPI programs / Write snap-shot
/* ql_client() waits for command of ql_mpiexec_{start,finish} */
if (ql_client() == QL_CONTINUE) { goto loop; }
MPI_Finalize();
qlmpilib.h should be included in the code and libql{mpi,fort}.so should be linked to the executable file.